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On the Lichtenberg hybrid quaternions

Gamaliel Morales 0000-0003-3164-4434

Abstract. In this study, we define Lichtenberg hybrid quaternions.
We give the Binet’s formula, the generating functions, exponential gen-
erating functions and sum formulas of these quaternions. We find
some relations between Jacobsthal hybrid quaternions, Mersenne hy-
brid quaternions and Lichtenberg hybrid quaternions. Also, Vajda’s
identity and, as consequences, Catalan’s identity, d’Ocagne’s identity
and Cassini’s identity are presented.

1. Introduction

Lichtenberg numbers are named after Georg Christoph Lichtenberg, who
studied these numbers in the 17th century. Lichtenberg numbers are denoted
by ℓn, defined mathematically by the recurrence ℓn+ℓn−1 = 2n−1 and have
the form

ℓn =
1

6

[
(−1)n+1 + 2n+2 − 3

]
.

The first few terms of the Lichtenberg sequence are:

0, 1, 2, 5, 10, 21, 42, 85, 170, 341, 682, . . . (A000975).

The Lichtenberg numbers {ℓn}∞n=0 are defined by the following recurrence
relation

(1) ℓn+3 = 2ℓn+2 + ℓn+1 − 2ℓn,

with ℓ0 = 0, ℓ1 = 1 and ℓ2 = 2 (see, e.g. [7,12]). Also, the Binet formula for
Lichtenberg numbers is defined in two different ways, including well-known
sequences of order 2:

(2) ℓn =
1

2

[
2n+2 − (−1)n+2

3
− 1

]
=

1

2
[Jn+2 − 1]

and

(3) ℓn =
1

3

[
2n+1 − 1− (−1)n + 1

2

]
=

1

3

[
Mn+1 −

(−1)n + 1

2

]
,
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where Jn is the n-th Jacobsthal number (see [8]) andMn is the n-th Mersenne
number (see [1]).

The relation (3) can be rewritten as ℓn = 1
3 [Mn+1 − bn], where bn is the

usual sequence bn = (−1)n+1
2 . The Jacobsthal numbers {Jn}∞n=0 are defined

by

(4) Jn+2 = Jn+1 + 2Jn, J0 = 0, J1 = 1.

Also, the Mersenne numbers {Mn}∞n=0 are defined by the following recur-
rence relation:

(5) Mn+2 = 3Mn+1 − 2Mn, M0 = 0, M1 = 1.

Additionally, these exists the following relationships between Mersenne and
Jacobsthal numbers (see, e.g. [1]):

(6) Mn =

{
3Jn, if n ≡ 0 (mod 2);

Jn + 4Jn−1, if n ≡ 1 (mod 2).

On the other hand, quaternions are generalizations of complex numbers
and its multiplication is not commutative. Quaternions have generally the
following form Ψ = ψ0 +ψ1i+ψ2j+ψ3k, where {1, i, j, k} are basis quater-
nions and ψm are real numbers for all m = 0, 1, 2, 3. The product rule for
units of quaternions is defined by

(7) i2 = j2 = k2 = −1, ijk = −1.

The author studied generalized Tribonacci quaternions numbers in their
research in [2, 3] and applied it to numerous number sequences. Recently,
Özdemir introduced the hybrid numbers and gave some of their properties
(see [10]). The set of hybrid numbers is

R[i, ε,h] =
{
ϕ0 + ϕ1i + ϕ2ε+ ϕ3h : ϕr ∈ R, r = 0, 1, 2, 3

}
.

The hybrid product is obtained by distributing the terms to the right, pre-
serving the order of multiplication of the units and then writing the values
of the following substituting each product of units by the equalities i2 = −1,
ε2 = 0, h2 = 1 and ih = −hi = ε + i. The table 1 shows us that the
multiplication operation with the hybrid numbers is not commutative. The
author studied hybrid numbers in their work in [4] and applied it to many
number sequences of order 2.

Table 1. The multiplication table for the basis of R[i, ε,h].

× 1 i ε h
1 1 i ε h
i i −1 1− h ε+ i
ε ε 1 + h 0 −ε
h h −(ε+ i) ε 1
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Using the Lichtenberg numbers {ℓn}∞n=0, we define Lichtenberg hybrid
numbers {hℓn}∞n=0 and Lichtenberg hybrid quaternions {Qhℓn}∞n=0 and give
some of their properties. We prove some theorems about Lichtenberg, Jacob-
sthal and Mersenne hybrid quaternions. We find generating functions, expo-
nential generating functions, Binet formulas, sum formulas of these numbers
and many other relationships between them.

2. Lichtenberg hybrid quaternion number {Qhℓn}∞n=0

The Jacobsthal hybrid number {Jhn}∞n=0, is defined as

Jhn = Jn + Jn+1i + Jn+2ε+ Jn+3h, n ≥ 0.

Similarly, the Mersenne hybrid number {Mhn}∞n=0, is defined as

Mhn =Mn +Mn+1i +Mn+2ε+Mn+3h, n ≥ 0.

The Binet formulas of the Jacobsthal and Mersenne hybrid numbers as fol-
lows:

(8) Jhn =
1

3

[
2n(1 + 2i + 4ε+ 8h)− (−1)n(1− i + ε− h)

]
and

(9) Mhn = 2n(1 + 2i + 4ε+ 8h)− (1 + i + ε+ h).

For more details on these two types of hybrid numbers see [13,14].
Here, we introduce some properties Lichtenberg hybrid quaternions. We

find some relations between Lichtenberg hybrid quaternion, Jacobsthal hy-
brid quaternion and Mersenne hybrid quaternion.

Definition 1. The Lichtenberg hybrid number is defined as follows:

(10) hℓn = ℓn + ℓn+1i + ℓn+2ε+ ℓn+3h, n ≥ 0,

where {i, ε,h} are hybrid units, and ℓn is the n-th Lichtenberg number.

Definition 2. The Lichtenberg hybrid quaternion is defined as follows:

(11) Qhℓn = hℓn + hℓn+1i+ hℓn+2j + hℓn+3k, n ≥ 0,

where {i, j, k} are quaternion units, and hℓn is the n-th Lichtenberg hybrid
number.

The Lichtenberg hybrid quaternion can be written as follows:

Qhℓn = hℓn + hℓn+1i+ hℓn+2j + hℓn+3k

= ℓn + ℓn+1i + ℓn+2ε+ ℓn+3h
+ (ℓn+1 + ℓn+2i + ℓn+3ε+ ℓn+4h) i
+ (ℓn+2 + ℓn+3i + ℓn+4ε+ ℓn+5h) j
+ (ℓn+3 + ℓn+4i + ℓn+5ε+ ℓn+6h) k

= Qℓn +Qℓn+1i +Qℓn+2ε+Qℓn+3h,
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where Qℓn = ℓn + ℓn+1i + ℓn+2j + ℓn+3k is the classic n-th Lichtenberg
quaternion number.

Theorem 1. For all n ≥ 0, the Binet’s formula of the Lichtenberg hybrid
quaternion is given by:

(12) Qhℓn =
1

6

[
(−1)n+1a1b1 + 2n+2a2b2 − 3a3b3

]
,

where

a1 = 1− i+ ε− h, b1 = 1− i+ j − k,

a2 = 1 + 2i+ 4ε+ 8h, b2 = 1 + 2i+ 4j + 8k,

a3 = 1 + i+ ε+ h, b3 = 1 + i+ j + k.

Proof. Using Binet formula of Lichtenberg number ℓn and (10), we have

hℓn = ℓn + ℓn+1i + ℓn+2ε+ ℓn+3h

=
1

6

[
(−1)n+1 + 2n+2 − 3

]
+

1

6

[
(−1)n+2 + 2n+3 − 3

]
i

+
1

6

[
(−1)n+3 + 2n+4 − 3

]
ε

+
1

6

[
(−1)n+4 + 2n+5 − 3

]
h

=
1

6

[
(−1)n+1a1 + 2n+2a2 − 3a3

]
,

where a1 = 1− i+ε−h, a2 = 1+2i+4ε+8h and a3 = 1+ i+ε+h. Now,
using Binet formula of Lichtenberg hybrid number hℓn and (11), we have

Qhℓn = hℓn + hℓn+1i+ hℓn+2j + hℓn+3k

=
1

6

[
(−1)n+1a1 + 2n+2a2 − 3a3

]
+

1

6

[
(−1)n+2a1 + 2n+3a2 − 3a3

]
i

+
1

6

[
(−1)n+3a1 + 2n+4a2 − 3a3

]
j

+
1

6

[
(−1)n+4a1 + 2n+5a2 − 3a3

]
k

=
1

6

[
(−1)n+1a1b1 + 2n+2a2b2 − 3a3b3

]
,

where b1 = 1 − i + j − k, b2 = 1 + 2i + 4j + 8k and b3 = 1 + i + j + k.
Thus, the proof is completed. □

Using Theorem 1, we can deduce the following result.
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Corollary 1. For the n-th Lichtenberg hybrid quaternion, we have

(13) Qhℓn =
1

2

[
QJhn+2 − a3b3

]
,

where QJhn is the n-th Jacobsthal hybrid quaternion.

Theorem 2. The following equation is provided for Lichtenberg hybrid quater-
nion:

(14) Qhℓn +Qhℓn−1 = 2na2b2 − a3b3.

Proof. Using (12), we have

Qhℓn +Qhℓn−1 =
1

6

[
(−1)n+1a1b1 + 2n+2a2b2 − 3a3b3

]
+

1

6

[
(−1)na1b1 + 2n+1a2b2 − 3a3b3

]
=

1

6

[
3 · 2n+1a2b2 − 6a3b3

]
= 2na2b2 − a3b3.

Thus, the proof is completed. □

Remark 1. The sequence 2na2b2 − a3b3 in Theorem 2 is recently studied
by Özkan and Uysal in [11]. Furthermore, this sequence is called Mersenne
hybrid quaternion and is denoted here as QMhn. Other references on the
hybrid quaternions are [9, 15].

Remark 2. A general sequence of order 2 is introduced by Daǧdeviren
and Kürüz (see [5]) considering hybrid and quaternion numbers. Also, the
authors defined the Horadam hybrid quaternions and presented some of their
properties. In fact, this new quaternion system is a combination of complex
quaternions, hyperbolic quaternions and dual quaternions, and it can be
viewed as a generalization of these quaternion systems (see [6]).

Theorem 3. The recurrence relation of the Lichtenberg hybrid quaternion
as follows:

(15) Qhℓn+3 = 2Qhℓn+2 +Qhℓn+1 − 2Qhℓn, n ≥ 0.

Proof. We will use (1) and (11) for the proof. We have

Qhℓn+3 = hℓn+3 + hℓn+4i+ hℓn+5j + hℓn+6k

= 2hℓn+2 + hℓn+1 − 2hℓn

+
(
2hℓn+3 + hℓn+2 − 2hℓn+1

)
i

+
(
2hℓn+4 + hℓn+3 − 2hℓn+2

)
j

+
(
2hℓn+5 + hℓn+4 − 2hℓn+3

)
k

= 2
(
hℓn+2 + hℓn+3i+ hℓn+4j + hℓn+5k

)
+ hℓn+1 + hℓn+2i+ hℓn+3j + hℓn+4k
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− 2
(
hℓn + hℓn+1i+ hℓn+2j + hℓn+3k

)
= 2Qhℓn+2 +Qhℓn+1 − 2Qhℓn.

Thus, the proof is completed. □

Theorem 4. The generating function of the Lichtenberg hybrid quaternion
is given by:
(16)

∞∑
n=0

Qhℓnx
n =

Qhℓ0 + (Qhℓ1 − 2Qhℓ0)x+ (Qhℓ2 − 2Qhℓ1 −Qhℓ0)x
2

1− 2x− x2 + 2x3
.

Proof. Suppose that the generating function of the Lichtenberg hybrid quater-
nion sequence has the form g(Qhℓn;x) = Qhℓ0 + Qhℓ1x + Qhℓ2x

2 + · · · +
Qhℓnx

n + · · · . Now, multiplying (1) by xn+3 and then taking summation
over 0 to ∞, we get

0 =

∞∑
n=0

xn+3
(
Qhℓn+3 − 2Qhℓn+2 −Qhℓn+1 + 2Qhℓn

)
= g(Qhℓn;x)−Qhℓ0 −Qhℓ1x−Qhℓ2x

2

− 2
[
g(Qhℓn;x)−Qhℓ0 +Qhℓ1x

]
x

−
[
g(Qhℓn;x)−Qhℓ0

]
x2

+ 2
[
g(Qhℓn;x)

]
x3

g(Qhℓn;x) =
Qhℓ0 + (Qhℓ1 − 2Qhℓ0)x+ (Qhℓ2 − 2Qhℓ1 −Qhℓ0)x

2

1− 2x− x2 + 2x3
.

Thus, the proof is completed. □

Theorem 5. The exponential generating function of Lichtenberg hybrid
quaternion has the form:

(17)
∞∑
n=0

Qhℓn

(xn
n!

)
=

1

6

(
−a1b1 + 4a2b2e

3x − 3a3b3e
2x
)
e−x.

Proof. Using Binet formula of the Lichtenberg hybrid quaternion Qhℓn in
Theorem 1, we have
∞∑
n=0

Qhℓn

(
xn

n!

)
=

1

6

∞∑
n=0

[
(−1)n+1a1b1 + 2n+2a2b2 − 3a3b3

] xn
n!

=
1

6

[
−a1b1

∞∑
n=0

(−x)n

n!
+ 4a2b2

∞∑
n=0

(2x)n

n!
− 3a3b3

∞∑
n=0

xn

n!

]

=
1

6

[
−a1b1e

−x + 4a2b2e
2x − 3a3b3e

x
]

=
1

6

[
−a1b1 + 4a2b2e

3x − 3a3b3e
2x
]
e−x.



G. Morales 37

Thus, the proof is completed. □

Theorem 6. The sum of the Lichtenberg hybrid quaternion is given by:

(18)
n∑

r=0

Qhℓr =
1

2
[Qhℓn+2 − (n+ 2)a3b3 − c1b3 − c2] ,

where a3, b3 as in Theorem 1, c1 = i + 4ε + 9h, and c2 = (1 + 3i + 5ε +
11h)i+ (4 + 8i+ 16ε+ 32h)j + (9 + 19i+ 37ε+ 75h)k.

Proof. Using (9), we have

n∑
r=0

ℓn =
1

2

[
n+2∑
r=0

Jr − (n+ 2)

]

=
1

4

[
Jn+4 − (2n+ 5)

]
=

1

2

[
ℓn+2 − (n+ 2)

]
,

where Jn is the n-th Jacobsthal number. Then, we can obtain the next
result

n∑
r=0

hℓr =
n∑

r=0

[
ℓr + ℓr+1i + ℓr+2ε+ ℓr+3h

]
=

n∑
r=0

ℓr +

(
n+1∑
r=0

ℓr

)
i +

(
n+2∑
r=0

ℓr − 1

)
ε+

(
n+3∑
r=0

ℓr − 3

)
h

=
1

2

[
hℓn+2 − (n+ 2)a3 − c1

]
,

where c1 = i + 4ε+ 9h and a3 as in Theorem 1.
Finally, using (11), we have

n∑
r=0

Qhℓr =
n∑

r=0

[
hℓr + hℓr+1i+ hℓr+2j + hℓr+3k

]
=

n∑
r=0

hℓr +

(
n+1∑
r=0

hℓr − hℓ0

)
i+

(
n+2∑
r=0

hℓr − hℓ0 − hℓ1

)
j

+

(
n+3∑
r=0

hℓr − hℓ0 − hℓ1 − hℓ2

)
k

=
1

2

[
Qhℓn+2 − (n+ 2)a3b3 − c1b3 − c2

]
,

where c2 = (1+3i+5ε+11h)i+(4+8i+16ε+32h)j+(9+19i+37ε+75h)k
and b3 as in Theorem 1. Thus, the proof is completed. □
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Theorem 7. For the n-th Lichtenberg hybrid quaternion, the following equa-
tions are provided:

(19) Qhℓn+2 = Qhℓn+1 + 2Qhℓn + a3b3

and

(20) Qhℓn =
1

6

{
2QMhn+1 − a1b1 − a3b3, if n ≡ 0 (mod 2);

2QMhn+1 + a1b1 − a3b3, if n ≡ 1 (mod 2);

where QMhn is the n-th Mersenne hybrid quaternion.

Proof. Using (12), we will prove the identity in (19). Then

Qhℓn+1 + 2Qhℓn + a3b3 =
1

6

[
(−1)n+2a1b1 + 2n+3a2b2 − 3a3b3

]
+

1

6

[
2(−1)n+1a1b1 + 2n+3a2b2 − 6a3b3

]
+ a3b3

=
1

6

[
(−1)n+3a1b1 + 2n+4a2b2 − 3a3b3

]
= Qhℓn+2.

Similarly, the proof of (20) can be done. □

For simplicity of notation, let

(21) Hℓn = (−1)n+1a1b1 + 2n+2a2b2.

Then, the Binet formula of the Lichtenberg hybrid quaternions is given by

(22) Qhℓn =
1

6

[
Hℓn − 3a3b3

]
,

where Hℓ0 = −a1b1 + 4a2b2 and Hℓ1 = a1b1 + 8a2b2.
The Vajda’s identity for the sequence {Hℓn}n≥0 and Lichtenberg hybrid

quaternion sequence {Qhℓn}n≥0 are given in the next theorem.

Theorem 8. Let n, u and v be integers such that n ≥ 0, u ≥ 0 and n+v ≥ 0.
Then, we have

(23)
Hℓn+uHℓn+v −HℓnHℓn+u+v

= 3(−2)n+2Ju
[
2va1b1a2b2 − (−1)va2b2a1b1

]
,

(24)

Qhℓn+uQhℓn+v −QhℓnQhℓn+u+v

=
1

12

{
(−2)n+2Ju

[
2va1b1a2b2 − (−1)va2b2a1b1

]
+ a3b3Kℓn(u)−Kℓn+v(u)a3b3

}
,

where Kℓn(u) = Hℓn −Hℓn+u.
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Proof.
(23): Using (21), a1, a2, b1 and b2 as in Theorem 1, we have

Hℓn+uHℓn+v −HℓnHℓn+u+v

=
(
(−1)n+u+1a1b1 + 2n+u+2a2b2

) (
(−1)n+v+1a1b1 + 2n+v+2a2b2

)
−
(
(−1)n+1a1b1 + 2n+2a2b2

) (
(−1)n+u+v+1a1b1 + 2n+u+v+2a2b2

)
= 3(−2)n+2Ju

[
2va1b1a2b2 − (−1)va2b2a1b1

]
,

where Ju is the u-th Jacobsthal number. Note that a1b1a2b2 ̸= a2b2a1b1

in above equation.

(24): By formula (22) and (23), we get

36
[
Qhℓn+uQhℓn+v −QhℓnQhℓn+u+v

]
=
[
Hℓn+u − 3a3b3

][
Hℓn+v − 3a3b3

]
−
[
Hℓn − 3a3b3

][
Hℓn+u+v − 3a3b3

]
= Hℓn+uHℓn+v −HℓnHℓn+u+v + 3

[
a3b3Kℓn(u)−Kℓn+v(u)a3b3

]
= 3(−2)n+2Ju

[
2va1b1a2b2 − (−1)va2b2a1b1

]
+ 3
[
a3b3Kℓn(u)−Kℓn+v(u)a3b3

]
,

where Kℓn(u) = Hℓn −Hℓn+u. □

It is easily seen that for special values of u and v by Theorem 8, we get
new identities for Lichtenberg hybrid quaternions:

• Catalan’s identity: v = −u and n ≥ u.
• Cassini’s identity: u = 1, v = −1 and n ≥ 1.
• d’Ocagne’s identity: u = 1, v = m− n and m ≥ n.

Corollary 2. Catalan identity for Lichtenberg hybrid quaternions. Let n ≥
0, u ≥ 0 be integers such that n ≥ u. Then

Qhℓn+uQhℓn−u −Qhℓ2n

=
1

12

{
(−2)n+2Ju

[
2−ua1b1a2b2 − (−1)−ua2b2a1b1

]
+ a3b3Kℓn(u)−Kℓn−u(u)a3b3

}
.

Corollary 3. Cassini identity for Lichtenberg hybrid quaternions. Let n ≥ 1
be an integer. Then

Qhℓn+1Qhℓn−1 −Qhℓ2n

=
1

12

{
(−2)n+1

[
a1b1a2b2 + 2a2b2a1b1

]
+ a3b3Kℓn(1)−Kℓn−1(1)a3b3

}
.
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Corollary 4. d’Ocagne identity for Lichtenberg hybrid quaternions. Let
n ≥ 0, m ≥ 0 be integers such that m ≥ n. Then

Qhℓn+1Qhℓm −QhℓnQhℓm+1

=
1

12

{
(−2)n+2

[
2m−na1b1a2b2 − (−1)m−na2b2a1b1

]
+ a3b3Kℓn(1)−Kℓm(1)a3b3

}
.

3. Conclusions and remarks

In this paper, we discussed the Lichtenberg hybrid quaternions and their
properties. We obtained the Binet’s formula, the generating function, expo-
nential generating function and sum formula of these numbers. Further, we
found some relations between Lichtenberg hybrid quaternion, Jacobsthal hy-
brid quaternion and Mersenne hybrid quaternion. In the future, the study of
quadratic properties in this type of numbers could be encouraged, including
the study of hybrid numbers with Lichtenberg hybrid number coefficients.
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